论文标题

新预测的新病例数量和印度尼西亚NCOVID-19鼠疫感染的总数,并修改了Bernoulli微分方程

A New Prediction of Daily Number of New Cases and Total Number Infected for nCOVID-19 Plague Infections In Indonesia with the Modification of the Bernoulli Differential Equation

论文作者

Putra, Valentinus Galih Vidia, Mohamad, Juliany Ningsih

论文摘要

微分方程的应用通常用于数学和物理学以及其他各种科学中,以解释系统中的现象。本文解释了2020年3月3日至2020年4月19日在印度尼西亚的NCOVID-19瘟疫分析中的数学建模,并随着MATLAB的伯努利方程进行了修改和MATLAB的模拟。在这项研究中,可以得出结论,发现印度尼西亚的Ncovid-19案件的日常数量最高,最多约为400,而印度尼西亚的Ncovid-19的总数将达到12000人,将在6月中旬到达12000人。在这种模型中,还发现,R2 = 0.9927的价值在2020年3月3日至2020年4月19日在印度尼西亚的Ncovid-19的总数中,而R2的值= 0.807的NCOVID-19在印度尼西亚的NCOVID-19的积极新案例的日常数量为2020年3月3日至2020年4月1920年,该案例可以基于2020年的模型。真实数据对印度尼西亚瘟疫进行了非常准确的比较。

The application of differential equations is commonly used in mathematics and physics, as well as various other sciences to explain a phenomenon in a system. This paper explains the mathematical modeling in the analysis of the nCOVID-19 plague in Indonesia on March 3, 2020, to April 19, 2020, with the modification of the Bernoulli equation and the simulation by MATLAB. In this study, it can be concluded that it was found that the daily number of nCOVID-19 cases in Indonesia will have the highest case at a maximum of around 400 and the total number of positive nCOVID-19 in Indonesia will reach 12000 people with a quiet period in mid-June. In this modeling, it has also been found that the value of R2 = 0.9927 on the total number of positive nCOVID-19 in Indonesia taken from 3 March 2020 to 19 April 2020, while the value of R2 = 0.807 daily number of positive new cases of nCOVID-19 in Indonesia taken from March 3, 2020, to April 19, 2020. Based on this research, it can be shown that the nCOVID-19 model for a case in the Indonesia plague is quite accurately compared by the real data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源