论文标题
Artin内核的图形分裂
Graphical splittings of Artin kernels
论文作者
论文摘要
我们研究Artin内核,即右角Artin组的离散字符的内核,并证明它们以可以从基础图中明确计算的方式将组分解为组图。当底层图是和弦时,我们表明每个这样的亚组要么过渡到无限生成的自由组,要么是可变等级的广义baumslag-solitar组。特别是对于块图(例如树),我们获得了一个显式的阵地公式,并讨论了相关右角ARTIN组的纤维空间的某些特征。
We study Artin kernels, i.e. kernels of discrete characters of right-angled Artin groups, and we show that they decompose as graphs of groups in a way that can be explicitly computed from the underlying graph. When the underlying graph is chordal we show that every such subgroup either surjects to an infinitely generated free group or is a generalized Baumslag-Solitar group of variable rank. In particular for block graphs (e.g. trees), we obtain an explicit rank formula, and discuss some features of the space of fibrations of the associated right-angled Artin group.