论文标题

测试球形和椭圆形对称性

Testing for spherical and elliptical symmetry

论文作者

Albisetti, Isaia, Balabdaoui, Fadoua, Holzmann, Hajo

论文摘要

我们基于以下特征来为球形和椭圆形对称性构建新的测试程序,即随机向量$ x $具有有限的均值时,只有$ \ ex [u^\ ex [u^\ top x | v^\ top x] = 0 $保留任何两个垂直向量$ u $和$ v $。我们的测试基于Kolmogorov-Smirnov统计量,其拒绝区域是通过球形对称的引导程序找到的。我们使用普通的Donsker定理显示了球形对称性引导测试的一致性,该定理具有独立的兴趣。对于测试椭圆形对称性的情况,由于估计的位置和比例参数,Kolmogorov-Smirnov统计量具有渐近漂移项。因此,在引导程序中需要附加标准化。在一项仿真研究中,评估了我们的测试的大小和功率特性,并将其与几个竞争程序的性能进行比较。

We construct new testing procedures for spherical and elliptical symmetry based on the characterization that a random vector $X$ with finite mean has a spherical distribution if and only if $\Ex[u^\top X | v^\top X] = 0$ holds for any two perpendicular vectors $u$ and $v$. Our test is based on the Kolmogorov-Smirnov statistic, and its rejection region is found via the spherically symmetric bootstrap. We show the consistency of the spherically symmetric bootstrap test using a general Donsker theorem which is of some independent interest. For the case of testing for elliptical symmetry, the Kolmogorov-Smirnov statistic has an asymptotic drift term due to the estimated location and scale parameters. Therefore, an additional standardization is required in the bootstrap procedure. In a simulation study, the size and the power properties of our tests are assessed for several distributions and the performance is compared to that of several competing procedures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源