论文标题

非线性操作员的自适应算法的收敛和准最佳成本,包括迭代线性化和代数求解器

Convergence and quasi-optimal cost of adaptive algorithms for nonlinear operators including iterative linearization and algebraic solver

论文作者

Haberl, Alexander, Praetorius, Dirk, Schimanko, Stefan, Vohralik, Martin

论文摘要

我们考虑使用强烈单调和Lipschitz连续非线性的二阶椭圆边界值问题。我们设计和研究了其自适应数值近似互连,以互连有限元离散化,Banach-Picard线性化和合同线性代数求解器。我们特别确定了代数求解器的停止标准,一方面不是要求过于紧张的容忍度,但另一方面,对于不精确的(扰动)Banach-Picard线性化就足够了。同样,我们确定了Banach-Picard迭代的合适停止标准,该标准留下了一系列线性化误差,这对于残留的A-Posteriori误差估计并不有害,以可靠地引导自适应网格。对于所得算法,我们证明(双重)不精确的收缩在一定程度的网格再填充 /衬里 /衬里 /代数求解器后迭代,导致其线性收敛。此外,对于通常的网格进行规则,我们还证明,相对于初始网格的元素数量(自由度),总体误差以最佳速率衰减。最后,我们证明我们的完全自适应算法将总体误差降低,而相同的最佳速率也相对于所有网格再填充,线性化和代数求解器的整体算法成本表示,以累积的网格元素数量表示。数值实验支持这些理论发现,并说明了几种测试用例完全自适应算法的最佳总体算法成本。

We consider a second-order elliptic boundary value problem with strongly monotone and Lipschitz-continuous nonlinearity. We design and study its adaptive numerical approximation interconnecting a finite element discretization, the Banach-Picard linearization, and a contractive linear algebraic solver. We in particular identify stopping criteria for the algebraic solver that on the one hand do not request an overly tight tolerance but on the other hand are sufficient for the inexact (perturbed) Banach-Picard linearization to remain contractive. Similarly, we identify suitable stopping criteria for the Banach-Picard iteration that leave an amount of linearization error that is not harmful for the residual a-posteriori error estimate to steer reliably the adaptive mesh-refinement. For the resulting algorithm, we prove a contraction of the (doubly) inexact iterates after some amount of steps of mesh-refinement / linerization / algebraic solver, leading to its linear convergence. Moreover, for usual mesh-refinement rules, we also prove that the overall error decays at the optimal rate with respect to the number of elements (degrees of freedom) added with respect to the initial mesh. Finally, we prove that our fully adaptive algorithm drives the overall error down with the same optimal rate also with respect to the overall algorithmic cost expressed as the cumulated sum of the number of mesh elements over all mesh-refinement, linearization, and algebraic solver steps. Numerical experiments support these theoretical findings and illustrate the optimal overall algorithmic cost of the fully adaptive algorithm on several test cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源