论文标题

开发机器学习系统,将肺CT扫描图像分类为正常/covid-19类

Development of a Machine-Learning System to Classify Lung CT Scan Images into Normal/COVID-19 Class

论文作者

Kadry, Seifedine, Rajinikanth, Venkatesan, Rho, Seungmin, Raja, Nadaradjane Sri Madhava, Rao, Vaddi Seshagiri, Thanaraj, Krishnan Palani

论文摘要

最近,由于冠状病毒疾病引起的肺部感染(COVID-19)影响了全世界的大型人类群体,并且对肺部感染率的评估对于治疗计划至关重要。这项研究旨在提出一个机器学习系统(MLS),以使用CT扫描切片(CTS)检测COVID-19感染。该MLS实现了一系列方法,例如使用阈值滤波器,特征拔除,功能选择,特征融合和分类等多阈值,图像分离。最初的部分实现了混乱的蝙蝠 - 偏金和卡普尔的熵(CBA+KE)阈值,以增强CTS。阈值滤波器根据所选阈值“ th”将图像分为两个段。这些图像的纹理特征是使用所选过程提取,完善和选择的。最后,实现了两类分类器系统,以将所选CTS(n = 500的像素维度为512x512x1)分类为正常/covid-19组。在这项工作中,实施了分类器,例如Naive Bayes(NB),K-Nearest邻居(KNN),决策树(DT),随机森林(RF)和带有线性内核(SVM)的支持向量机,分类任务是使用各种特征向量执行的。 SVM使用融合功能-Dector(FFV)的实验结果有助于达到89.80%的检测准确性。

Recently, the lung infection due to Coronavirus Disease (COVID-19) affected a large human group worldwide and the assessment of the infection rate in the lung is essential for treatment planning. This research aims to propose a Machine-Learning-System (MLS) to detect the COVID-19 infection using the CT scan Slices (CTS). This MLS implements a sequence of methods, such as multi-thresholding, image separation using threshold filter, feature-extraction, feature-selection, feature-fusion and classification. The initial part implements the Chaotic-Bat-Algorithm and Kapur's Entropy (CBA+KE) thresholding to enhance the CTS. The threshold filter separates the image into two segments based on a chosen threshold 'Th'. The texture features of these images are extracted, refined and selected using the chosen procedures. Finally, a two-class classifier system is implemented to categorize the chosen CTS (n=500 with a pixel dimension of 512x512x1) into normal/COVID-19 group. In this work, the classifiers, such as Naive Bayes (NB), k-Nearest Neighbors (KNN), Decision Tree (DT), Random Forest (RF) and Support Vector Machine with linear kernel (SVM) are implemented and the classification task is performed using various feature vectors. The experimental outcome of the SVM with Fused-Feature-Vector (FFV) helped to attain a detection accuracy of 89.80%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源