论文标题
EAO-SLAM:基于合奏数据关联的单眼半密度对象猛击
EAO-SLAM: Monocular Semi-Dense Object SLAM Based on Ensemble Data Association
论文作者
论文摘要
对象级数据关联和姿势估计在语义大满贯中起着基本作用,由于缺乏鲁棒和准确的算法,该语义大满贯仍然无法解决。在这项工作中,我们提出了一个集成数据关联策略,用于整合参数和非参数统计测试。通过利用不同统计的性质,我们的方法可以有效地汇总不同测量值的信息,从而显着提高数据关联的鲁棒性和准确性。然后,我们提出了一个准确的对象姿势估计框架,其中开发了异常曲线和尺度估计算法和对象姿势初始化算法,以帮助提高姿势估计结果的最佳性。此外,我们构建了一个大满贯系统,该系统可以使用单眼相机生成半密度或轻巧的面向对象的地图。在三个公开可用的数据集和一个实际情况下进行了广泛的实验。结果表明,我们的方法在准确性和鲁棒性方面显着优于最先进的技术。源代码可在:https://github.com/yanmin-wu/eao-slam上找到。
Object-level data association and pose estimation play a fundamental role in semantic SLAM, which remain unsolved due to the lack of robust and accurate algorithms. In this work, we propose an ensemble data associate strategy for integrating the parametric and nonparametric statistic tests. By exploiting the nature of different statistics, our method can effectively aggregate the information of different measurements, and thus significantly improve the robustness and accuracy of data association. We then present an accurate object pose estimation framework, in which an outliers-robust centroid and scale estimation algorithm and an object pose initialization algorithm are developed to help improve the optimality of pose estimation results. Furthermore, we build a SLAM system that can generate semi-dense or lightweight object-oriented maps with a monocular camera. Extensive experiments are conducted on three publicly available datasets and a real scenario. The results show that our approach significantly outperforms state-of-the-art techniques in accuracy and robustness. The source code is available on: https://github.com/yanmin-wu/EAO-SLAM.