论文标题
在对抗注射下的强大算法
Robust Algorithms under Adversarial Injections
论文作者
论文摘要
在本文中,我们在输入中随机性的背景下研究流和在线算法。对于几个问题,输入序列的随机顺序与最差的命令相反,似乎是必要的邪恶,以证明可满足的保证。但是,在此假设下起作用的算法技术往往容易受到分布的小变化。因此,我们提出了一个新的\ emph {对抗注射}模型,其中输入是随机排序的,但是对手可能会在任意位置注入误导性元素。我们认为,在这个弱化的假设下研究算法会导致新的见解,尤其是更强大的算法。我们在此模型中研究了两个经典的组合优化问题:最大匹配和基数约束单调下调函数最大化。我们的主要技术贡献是一种用于后者的新型流算法,该算法计算出$ 0.55 $ -Approximation。尽管算法本身是干净且简单的,但涉及的分析表明,它模拟了输入流的细分,该分段可用于极大地限制对手的力量。
In this paper, we study streaming and online algorithms in the context of randomness in the input. For several problems, a random order of the input sequence---as opposed to the worst-case order---appears to be a necessary evil in order to prove satisfying guarantees. However, algorithmic techniques that work under this assumption tend to be vulnerable to even small changes in the distribution. For this reason, we propose a new \emph{adversarial injections} model, in which the input is ordered randomly, but an adversary may inject misleading elements at arbitrary positions. We believe that studying algorithms under this much weaker assumption can lead to new insights and, in particular, more robust algorithms. We investigate two classical combinatorial-optimization problems in this model: Maximum matching and cardinality constrained monotone submodular function maximization. Our main technical contribution is a novel streaming algorithm for the latter that computes a $0.55$-approximation. While the algorithm itself is clean and simple, an involved analysis shows that it emulates a subdivision of the input stream which can be used to greatly limit the power of the adversary.