论文标题
高衍生$ 6D $ SEMS理论中一环差异的超级图计算
Supergraph calculation of one-loop divergences in higher-derivative $6D$ SYM theory
论文作者
论文摘要
我们应用谐波超空间方法来计算$ 6D $,$ {\ cal n} =(1,0)$ Supersympersymmememempric的高导数理论的一环有效动作的不同部分,具有无尺寸的耦合常数。我们的考虑使用背景超级场方法,允许在明显的量规协变量和$ {\ cal n} =(1,0)$ supersymmemetric方法中对有效动作进行分析。我们通过尺寸降低来利用正则化,其中差异被吸收到耦合常数的重新归一化中。具有一环差异的表达式,我们计算相关的$β$功能。它的符号由经典动作的整体符号指定,在高源理论中,这不是修复{\ it先验}。结果与组件方法中的早期计算一致。超级场计算更简单,并为各种概括提供了可能性。
We apply the harmonic superspace approach for calculating the divergent part of the one-loop effective action of $6D$, ${\cal N}=(1,0)$ supersymmetric higher-derivative gauge theory with a dimensionless coupling constant. Our consideration uses the background superfield method allowing to carry out the analysis of the effective action in a manifestly gauge covariant and ${\cal N}=(1,0)$ supersymmetric way. We exploit the regularization by dimensional reduction in which the divergences are absorbed into a renormalization of the coupling constant. Having the expression for the one-loop divergences, we calculate the relevant $β$-function. Its sign is specified by the overall sign of the classical action which in higher-derivative theories is not fixed {\it a priori}. The result agrees with the earlier calculations in the component approach. The superfield calculation is simpler and provides possibilities for various generalizations.