论文标题
贝叶斯学习概率偶极子倒置的定量敏感性映射
Bayesian Learning of Probabilistic Dipole Inversion for Quantitative Susceptibility Mapping
论文作者
论文摘要
提出了一种基于学习的后验分布估计方法,即概率偶极反转(PDI),以求解MRI中MRI的定量敏感性映射(QSM)逆问题,并具有不确定性估计。鉴于输入测量的场,使用深卷积神经网络(CNN)表示易感性的近似后验分布表示多元高斯分布。在PDI中,首先通过在贝叶斯深度学习中使用的后高斯分布损失函数对具有标签的健康受试者数据集进行了培训。当在没有任何标签的新数据集上进行测试时,PDI通过将CNN表示的近似后验分布与真实后验分布之间的KL差异最大程度地减少,鉴于已知的物理模型和先前分布的可能性分布,以无监督的方式更新了预训练的网络。根据我们的实验,与常规地图方法相比,PDI提供了额外的不确定性估计,同时解决了测试数据偏离培训数据集时,解决了CNN的潜在差异问题。
A learning-based posterior distribution estimation method, Probabilistic Dipole Inversion (PDI), is proposed to solve quantitative susceptibility mapping (QSM) inverse problem in MRI with uncertainty estimation. A deep convolutional neural network (CNN) is used to represent the multivariate Gaussian distribution as the approximated posterior distribution of susceptibility given the input measured field. In PDI, such CNN is firstly trained on healthy subjects dataset with labels by maximizing the posterior Gaussian distribution loss function as used in Bayesian deep learning. When tested on new dataset without any label, PDI updates the pre-trained network in an unsupervised fashion by minimizing the KL divergence between the approximated posterior distribution represented by CNN and the true posterior distribution given the likelihood distribution from known physical model and prior distribution. Based on our experiments, PDI provides additional uncertainty estimation compared to the conventional MAP approach, meanwhile addressing the potential discrepancy issue of CNN when test data deviates from training dataset.