论文标题

通过动态编程的系统级合成

System Level Synthesis via Dynamic Programming

论文作者

Tseng, Shih-Hao, Alonso}, Carmen {Amo, Han, SooJean

论文摘要

系统级综合(SLS)参数化通过将系统级约束(SLC)纳入凸SLS问题并将其解决方案映射到稳定的控制器设计中,从而有助于大型,复杂和分布式系统的控制器合成。有效地解决SLS问题是具有挑战性的,并且当前尝试利用特殊的系统或控制器结构并并行加快计算。但是,这些方法不依赖特定的系统/控制器属性,因此不会概括。 我们认为,可以通过利用SLS约束的结构来更有效地解决一般SLS问题。特别是,我们得出动态编程(DP)算法来解决SLS问题。除了没有任何SLC的普通SLS外,我们还扩展了DP,以应对无限的Horizo​​n SLS近似和进入线性约束,这形成了位置约束的超类。与凸程序求解器和幼稚的分析推导相比,DP求解了SLS的速度4至12倍,并且尺度很少,而计算开销很少。我们还量化了合成控制器的成本,该控制器通过模拟在有限的视野中稳定系统。

System Level Synthesis (SLS) parametrization facilitates controller synthesis for large, complex, and distributed systems by incorporating system level constraints (SLCs) into a convex SLS problem and mapping its solution to stable controller design. Solving the SLS problem at scale efficiently is challenging, and current attempts take advantage of special system or controller structures to speed up the computation in parallel. However, those methods do not generalize as they rely on the specific system/controller properties. We argue that it is possible to solve general SLS problems more efficiently by exploiting the structure of SLS constraints. In particular, we derive dynamic programming (DP) algorithms to solve SLS problems. In addition to the plain SLS without any SLCs, we extend DP to tackle infinite horizon SLS approximation and entrywise linear constraints, which form a superclass of the locality constraints. Comparing to convex program solver and naive analytical derivation, DP solves SLS 4 to 12 times faster and scales with little computation overhead. We also quantize the cost of synthesizing a controller that stabilizes the system in a finite horizon through simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源