论文标题

卡西米尔力在变形的费米子链上

Casimir forces on deformed fermionic chains

论文作者

Mula, Begoña, Santalla, Silvia N., Rodríguez-Laguna, Javier

论文摘要

我们表征了dirac真空的Casimir力,其自由花环链具有平稳变化的振幅,这对应于(1+1)d弯曲的空间,并在连续限制下具有静态度量。该晶格上障碍物的一阶能量潜力与与度量标准相关的牛顿电位对应,而有限尺寸的校正则通过保形场理论预测的弯曲扩展(包括合适的边界项)来描述。我们表明,对于Minkowski公制的弱变形,由边界处的局部观察者测量的Casimir力是公制的。我们提供了有关(1+1)D变形的结果的数值证据:Minkowski,Rindler,Anti-DE保姆(所谓的彩虹系统)和正弦度量指标。

We characterize the Casimir forces for the Dirac vacuum on free-fermionic chains with smoothly varying hopping amplitudes, which correspond to (1+1)D curved spacetimes with a static metric in the continuum limit. The first-order energy potential for an obstacle on that lattice corresponds to the Newtonian potential associated to the metric, while the finite-size corrections are described by a curved extension of the conformal field theory predictions, including a suitable boundary term. We show that, for weak deformations of the Minkowski metric, Casimir forces measured by a local observer at the boundary are metric-independent. We provide numerical evidence for our results on a variety of (1+1)D deformations: Minkowski, Rindler, anti-de Sitter (the so-called rainbow system) and sinusoidal metrics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源