论文标题
移动培养基中的波浪散射穿过延整插血性方案
Wave Scattering in Moving Media across the Subluminal-Interluminal Regimes
论文作者
论文摘要
本文在几个方面扩展了从有限移动介质的电磁波散射的当前知识。首先,它补充了移动媒体的通常分散关系,$ω(θ_\ mathbf {k})$($θ_\ Mathbf {k} $:阶段速度方向,与Wave Vector,$ \ Mathbf {K {k} $相关联,与等于重要的ImpeDance Reliation,$ nath(s $η(s)) ($θ_\ Mathbf {s} $:组速度方向,与poynting vector相关联,$ \ mathbf {s} $)。其次,它解释了双向波动波动在常规介质和移动介质之间的固定界面跨固定界面的传播的膜播 - 假设垂直于界面的运动,并表明相关的波是能量折射角度对称的,同时又表现出了两种范围的差异,并且表明了潮流的范围,并表明浪潮的范围是不对称的,并且是浪潮的范围,浪潮是浪潮的,浪潮是不对称的。波是相等的。第三,它将问题推广到介质相对于界面倾斜移动的情况。最后,它突出了此问题与时空调制介质之间的连接。
This paper extends current knowledge on electromagnetic wave scattering from bounded moving media in several regards. First, it complements the usual dispersion relation of moving media, $ω(θ_\mathbf{k})$ ($θ_\mathbf{k}$: phase velocity direction, associated with the wave vector, $\mathbf{k}$), with the equally important impedance relation, $η(θ_\mathbf{S})$ ($θ_\mathbf{S}$: group velocity direction, associated with the Poynting vector, $\mathbf{S}$). Second, it explains the interluminal-regime phenomenon of double-downstream wave transmission across a stationary interface between a regular medium and the moving medium, assuming motion perpendicular to the interface, and shows that the related waves are symmetric in terms of the energy refraction angle, while being asymmetric in terms of the phase refraction angle, with one of the waves subject to negative refraction, and shows that the wave impedances of the two transmitted waves are equal. Third, it generalizes the problem to the case where the medium moves obliquely with respect to the interface. Finally, it highlights the connection between this problem and a spacetime modulated medium.