论文标题

神经网络控制系统的可触及设定估计:一种模拟引导的方法

Reachable Set Estimation for Neural Network Control Systems: A Simulation-Guided Approach

论文作者

Xiang, Weiming, Tran, Hoang-Dung, Yang, Xiaodong, Johnson, Taylor T.

论文摘要

人工智能(AI)和机器学习(ML)针对对抗性干扰和攻击的脆弱性极大地限制了其在安全至关重要的系统中的适用性,包括在感应和控制的各个阶段配备了具有神经网络组件的网络物理系统(CPS)。本文介绍了与神经网络组件嵌入的动态系统的可及设置估计和安全验证问题,这些系统用作反馈控制器。可以在神经网络控制器的控制下以连续时间采样数据系统的形式提取闭环系统。首先,开发了一种适应从神经网络产生的模拟的新型可及的计算方法。在间隔算术的框架中,对一类称为多层感知器(MLP)的前馈神经网络(MLP)进行了可及性分析。然后,结合针对由普通微分方程建模的各种动力学系统类开发的可及性方法,开发了递归算法,以使闭环系统的可触及到可及的集合。神经网络控制系统的安全验证可以通过检查可触及套件的过度承认与不安全集合之间的相交的空虚来执行。通过对机器人ARM模型和自适应巡航控制系统的评估,已验证了所提出的方法的有效性。

The vulnerability of artificial intelligence (AI) and machine learning (ML) against adversarial disturbances and attacks significantly restricts their applicability in safety-critical systems including cyber-physical systems (CPS) equipped with neural network components at various stages of sensing and control. This paper addresses the reachable set estimation and safety verification problems for dynamical systems embedded with neural network components serving as feedback controllers. The closed-loop system can be abstracted in the form of a continuous-time sampled-data system under the control of a neural network controller. First, a novel reachable set computation method in adaptation to simulations generated out of neural networks is developed. The reachability analysis of a class of feedforward neural networks called multilayer perceptrons (MLP) with general activation functions is performed in the framework of interval arithmetic. Then, in combination with reachability methods developed for various dynamical system classes modeled by ordinary differential equations, a recursive algorithm is developed for over-approximating the reachable set of the closed-loop system. The safety verification for neural network control systems can be performed by examining the emptiness of the intersection between the over-approximation of reachable sets and unsafe sets. The effectiveness of the proposed approach has been validated with evaluations on a robotic arm model and an adaptive cruise control system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源