论文标题

一项有关将领域知识纳入深度学习的调查以进行医学图像分析

A Survey on Incorporating Domain Knowledge into Deep Learning for Medical Image Analysis

论文作者

Xie, Xiaozheng, Niu, Jianwei, Liu, Xuefeng, Chen, Zhengsu, Tang, Shaojie, Yu, Shui

论文摘要

尽管像CNN这样的深度学习模型在医学图像分析中取得了巨大的成功,但医疗数据集的尺寸较小仍然是该领域的主要瓶颈。为了解决这个问题,研究人员已经开始寻找超出当前可用医疗数据集以外的外部信息。传统方法通常通过转移学习利用自然图像的信息。最新的作品利用医生的领域知识来创建类似于医生的培训,模仿其诊断模式或专注于他们特别关注的功能或领域的网络。在这项调查中,我们总结了将医疗领域知识整合到深度学习模型中的当前进展,例如疾病诊断,病变,器官和异常检测,病变和器官分割。对于每个任务,我们会系统地对已使用的不同种类的医学领域知识进行分类及其相应的集成方法。我们还为未来的研究提供了当前的挑战和方向。

Although deep learning models like CNNs have achieved great success in medical image analysis, the small size of medical datasets remains a major bottleneck in this area. To address this problem, researchers have started looking for external information beyond current available medical datasets. Traditional approaches generally leverage the information from natural images via transfer learning. More recent works utilize the domain knowledge from medical doctors, to create networks that resemble how medical doctors are trained, mimic their diagnostic patterns, or focus on the features or areas they pay particular attention to. In this survey, we summarize the current progress on integrating medical domain knowledge into deep learning models for various tasks, such as disease diagnosis, lesion, organ and abnormality detection, lesion and organ segmentation. For each task, we systematically categorize different kinds of medical domain knowledge that have been utilized and their corresponding integrating methods. We also provide current challenges and directions for future research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源