论文标题

在衍生化的非线性schrödinger方程上,具有弱耗散结构

On the derivative nonlinear Schrödinger equation with weakly dissipative structure

论文作者

Li, Chunhua, Nishii, Yoshinori, Sagawa, Yuji, Sunagawa, Hideaki

论文摘要

我们考虑了一个空间维度中立方导数非线性schrödinger方程的初始值问题。在非线性的适当弱耗散条件下,我们表明,小型数据解决方案的对数时间衰减为$ l^2 $。

We consider the initial value problem for cubic derivative nonlinear Schrödinger equation in one space dimension. Under a suitable weakly dissipative condition on the nonlinearity, we show that the small data solution has a logarithmic time decay in $L^2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源