论文标题
在衍生化的非线性schrödinger方程上,具有弱耗散结构
On the derivative nonlinear Schrödinger equation with weakly dissipative structure
论文作者
论文摘要
我们考虑了一个空间维度中立方导数非线性schrödinger方程的初始值问题。在非线性的适当弱耗散条件下,我们表明,小型数据解决方案的对数时间衰减为$ l^2 $。
We consider the initial value problem for cubic derivative nonlinear Schrödinger equation in one space dimension. Under a suitable weakly dissipative condition on the nonlinearity, we show that the small data solution has a logarithmic time decay in $L^2$.