论文标题

句法数据的增强增加了推理启发式的鲁棒性

Syntactic Data Augmentation Increases Robustness to Inference Heuristics

论文作者

Min, Junghyun, McCoy, R. Thomas, Das, Dipanjan, Pitler, Emily, Linzen, Tal

论文摘要

经过验证的神经模型,例如BERT进行微调以执行自然语言推断(NLI),通常在标准数据集上表现出很高的精度,但在受控挑战集中对单词顺序缺乏敏感性。我们假设这个问题不是主要是由验证的模型的局限性引起的,而是由于众包NLI示例的匮乏而引起的,这些示例可能传达了在微调阶段传达句法结构的重要性。我们探索了几种通过句法内容丰富的示例来增强标准培训集的方法,这些方法是通过将句法转换应用于MNLI语料库的句子而产生的。表现最佳的增强方法,主题/对象倒置,提高了BERT对受控示例的准确性,该示例诊断了对单词顺序的敏感性从0.28到0.73,而不会影响MNLI测试集的性能。这种改进超出了用于数据增强的特定结构之外的概括,这表明增强导致BERT招募抽象的句法表示。

Pretrained neural models such as BERT, when fine-tuned to perform natural language inference (NLI), often show high accuracy on standard datasets, but display a surprising lack of sensitivity to word order on controlled challenge sets. We hypothesize that this issue is not primarily caused by the pretrained model's limitations, but rather by the paucity of crowdsourced NLI examples that might convey the importance of syntactic structure at the fine-tuning stage. We explore several methods to augment standard training sets with syntactically informative examples, generated by applying syntactic transformations to sentences from the MNLI corpus. The best-performing augmentation method, subject/object inversion, improved BERT's accuracy on controlled examples that diagnose sensitivity to word order from 0.28 to 0.73, without affecting performance on the MNLI test set. This improvement generalized beyond the particular construction used for data augmentation, suggesting that augmentation causes BERT to recruit abstract syntactic representations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源