论文标题
光谱数据增强技术可量化CT图像的肺病理
Spectral Data Augmentation Techniques to quantify Lung Pathology from CT-images
论文作者
论文摘要
数据增强在生物医学图像处理任务中至关重要,其特征在于标记数据量不足,以最好地使用所有存在的数据。中使用技术的范围从强度转换和弹性变形到线性结合现有数据点以制造新的数据点。在这项工作中,我们建议使用离散余弦和小波变换的光谱技术用于数据增强。我们从经验上评估了我们的CT纹理分析任务的方法,以检测囊性纤维化患者的肺部 - 组织异常。经验实验表明,与现有方法相比,所提出的光谱方法表现出色。当与现有方法结合使用时,我们提出的方法可以在简单的复制基线上将相对的次要类分割性能提高44.1%。
Data augmentation is of paramount importance in biomedical image processing tasks, characterized by inadequate amounts of labelled data, to best use all of the data that is present. In-use techniques range from intensity transformations and elastic deformations, to linearly combining existing data points to make new ones. In this work, we propose the use of spectral techniques for data augmentation, using the discrete cosine and wavelet transforms. We empirically evaluate our approaches on a CT texture analysis task to detect abnormal lung-tissue in patients with cystic fibrosis. Empirical experiments show that the proposed spectral methods perform favourably as compared to the existing methods. When used in combination with existing methods, our proposed approach can increase the relative minor class segmentation performance by 44.1% over a simple replication baseline.