论文标题

在量子误差校正中使用量子计量界:一个简单的eastin-knill定理证明

Using Quantum Metrological Bounds in Quantum Error Correction: A Simple Proof of the Approximate Eastin-Knill Theorem

论文作者

Kubica, Aleksander, Demkowicz-Dobrzanski, Rafal

论文摘要

我们提供了近似East-Knill定理的简单证明,该证明将量子错误校正代码(QECC)的质量与实现通用横向逻辑门的能力联系起来。我们的派生在通用量子计量方案中采用量子渔民信息的强大界限,以表征以最坏的案例纠缠保真度测量的QECC性能。该定理适用于大型的脱碳模型,包括独立的擦除和去极化噪声。我们的方法是非正统的,因为我们没有遵循利用QECC来减轻量子计量协议中噪声的既定路径,而是应用量子计量学方法来探索QECC的局限性。

We present a simple proof of the approximate Eastin-Knill theorem, which connects the quality of a quantum error-correcting code (QECC) with its ability to achieve a universal set of transversal logical gates. Our derivation employs powerful bounds on the quantum Fisher information in generic quantum metrological protocols to characterize the QECC performance measured in terms of the worst-case entanglement fidelity. The theorem is applicable to a large class of decoherence models, including independent erasure and depolarizing noise. Our approach is unorthodox, as instead of following the established path of utilizing QECCs to mitigate noise in quantum metrological protocols, we apply methods of quantum metrology to explore the limitations of QECCs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源