论文标题
量子笼中相互作用的多体全型固定晶格
Quantum Caging in Interacting Many-Body All-Bands-Flat Lattices
论文作者
论文摘要
我们考虑缺乏分散的翻译不变的紧密结合全频盘网络。在最近的工作[Arxiv:2004.11871]中,我们得出了这些网络的子集,这些网络保留了非线性笼子,即在存在类似Kerr的局部非线性的情况下保持紧凑的激发紧凑。在这里,我们用玻色纸的相互作用和研究量子笼子代替了非线性术语。我们证明了两个和三个颗粒的退化能量重归于的紧凑型状态,并使用电感猜想将其推广到任何有限数量的参与粒子,以一个维度为单位。我们的结果解释并概括了钻石链上两个颗粒的先前观察结果[Vidal等人。物理。莱特牧师。 85,3906(2000)]。我们进一步证明,量子笼状条件可以保证在[Tovmasyan等Phys中首次揭示的任何晶格维度中存在广泛的保守量集。 Rev. B 98,134513(2018)]用于一组特定网络。因此,通过破坏单个颗粒笼的相互作用颗粒对移动来实现传输。
We consider translationally invariant tight-binding all-bands-flat networks which lack dispersion. In a recent work [arXiv:2004.11871] we derived the subset of these networks which preserves nonlinear caging, i.e. keeps compact excitations compact in the presence of Kerr-like local nonlinearities. Here we replace nonlinear terms by Bose-Hubbard interactions and study quantum caging. We prove the existence of degenerate energy renormalized compact states for two and three particles, and use an inductive conjecture to generalize to any finite number M of participating particles in one dimension. Our results explain and generalize previous observations for two particles on a diamond chain [Vidal et.al. Phys. Rev. Lett. 85, 3906 (2000)]. We further prove that quantum caging conditions guarantee the existence of extensive sets of conserved quantities in any lattice dimension, as first revealed in [Tovmasyan et al Phys. Rev. B 98, 134513 (2018)] for a set of specific networks. Consequently transport is realized through moving pairs of interacting particles which break the single particle caging.