论文标题
非线性非均匀的罗宾蛋白问题几乎具有关键和部分凹反应
Nonlinear nonhomogeneous Robin problems with almost critical and partially concave reaction
论文作者
论文摘要
我们考虑了一个非均匀差异操作员驱动的非线性罗宾问题,其反应表现出了两个carathéodory术语的竞争。一个是参数,$(p-1)$ - sublinear,在零附近具有部分凹的非线性。另一个是$(P-1)$ - 超级线性,几乎具有关键的增长。利用问题的特殊几何形状,我们证明了分叉类型的结果,将积极解决方案集的变化描述为参数$λ> 0 $的变化。
We consider a nonlinear Robin problem driven by a nonhomogeneous differential operator, with reaction which exhibits the competition of two Carathéodory terms. One is parametric, $(p-1)$-sublinear with a partially concave nonlinearity near zero. The other is $(p-1)$-superlinear and has almost critical growth. Exploiting the special geometry of the problem, we prove a bifurcation-type result, describing the changes in the set of positive solutions as the parameter $λ>0$ varies.