论文标题
近似量子分区功能的有效算法
Efficient Algorithms for Approximating Quantum Partition Functions
论文作者
论文摘要
我们为高温下量子自旋模型的分区函数建立了多项式时间近似算法。我们的算法基于Netočný和Redig的量子群集扩展以及由于Helmuth,Perkins和Regts而设计算法的群集扩展方法。先前通过相关方法获得了类似的结果,我们的主要贡献是对有限度图上的成对相互作用的情况进行简单而略微更清晰的分析。
We establish a polynomial-time approximation algorithm for partition functions of quantum spin models at high temperature. Our algorithm is based on the quantum cluster expansion of Netočný and Redig and the cluster expansion approach to designing algorithms due to Helmuth, Perkins, and Regts. Similar results have previously been obtained by related methods, and our main contribution is a simple and slightly sharper analysis for the case of pairwise interactions on bounded-degree graphs.