论文标题

为什么将Android应用归类为恶意软件?迈向恶意软件分类解释

Why an Android App is Classified as Malware? Towards Malware Classification Interpretation

论文作者

Wu, Bozhi, Chen, Sen, Gao, Cuiyun, Fan, Lingling, Liu, Yang, Wen, Weiping, Lyu, Michael R.

论文摘要

基于机器的方法(ML)方法被认为是Android恶意软件检测最有前途的技术之一,并且通过利用常用功能获得了很高的精度。实际上,大多数ML分类仅为移动用户和应用程序安全分析师提供二进制标签。但是,利益相关者对应用程序在学术界和行业中被归类为恶意的原因更感兴趣。这属于可解释的ML的研究领域,但在特定的研究领域(即移动恶意软件检测)。尽管已经展示了几种可解释的ML方法来解释许多基于最先进的人工智能(AI)研究领域的最终分类结果,但到目前为止,尚无研究解释为什么应用程序被归类为恶意软件或揭示特定领域的挑战。 在本文中,为了填补这一空白,我们提出了一种新颖且可解释的基于ML的方法(命名为XMAL),以高精度对恶意软件进行分类,并解释分类结果。 (1)XMAL的第一个分类阶段铰接多层感知器(MLP)和注意机制,并且还指出了与分类结果最相关的关键特征。 (2)第二个解释阶段旨在自动产生神经语言描述,以解释应用程序中的核心恶意行为。我们通过与现有的基于可解释的ML的方法(即Drebin和Lime)进行比较来评估行为描述结果以证明XMAL的有效性。我们发现Xmal能够更准确地揭示恶意行为。此外,我们的实验表明,XMAL还可以解释某些样品被ML分类器错误分类的原因。我们的研究通过研究Android恶意软件检测和分析来窥视可解释的ML。

Machine learning (ML) based approach is considered as one of the most promising techniques for Android malware detection and has achieved high accuracy by leveraging commonly-used features. In practice, most of the ML classifications only provide a binary label to mobile users and app security analysts. However, stakeholders are more interested in the reason why apps are classified as malicious in both academia and industry. This belongs to the research area of interpretable ML but in a specific research domain (i.e., mobile malware detection). Although several interpretable ML methods have been exhibited to explain the final classification results in many cutting-edge Artificial Intelligent (AI) based research fields, till now, there is no study interpreting why an app is classified as malware or unveiling the domain-specific challenges. In this paper, to fill this gap, we propose a novel and interpretable ML-based approach (named XMal) to classify malware with high accuracy and explain the classification result meanwhile. (1) The first classification phase of XMal hinges multi-layer perceptron (MLP) and attention mechanism, and also pinpoints the key features most related to the classification result. (2) The second interpreting phase aims at automatically producing neural language descriptions to interpret the core malicious behaviors within apps. We evaluate the behavior description results by comparing with the existing interpretable ML-based methods (i.e., Drebin and LIME) to demonstrate the effectiveness of XMal. We find that XMal is able to reveal the malicious behaviors more accurately. Additionally, our experiments show that XMal can also interpret the reason why some samples are misclassified by ML classifiers. Our study peeks into the interpretable ML through the research of Android malware detection and analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源