论文标题

挖掘自相似性:标签超级分辨率,带有表面代表

Mining self-similarity: Label super-resolution with epitomic representations

论文作者

Malkin, Nikolay, Ortiz, Anthony, Robinson, Caleb, Jojic, Nebojsa

论文摘要

我们表明,简单的基于贴片的模型(例如Epotomes)可以在语义分割和标签超分辨率中具有出色的性能,该模型使用深度卷积神经网络。我们针对一个新型的缩影得出了一种新的训练算法,该算法首次允许从非常大的数据集中学习,并得出标签超分辨率算法,作为统计推断算法,而不是表现量表。我们说明了关于土地覆盖映射和医学图像分析任务的方法。

We show that simple patch-based models, such as epitomes, can have superior performance to the current state of the art in semantic segmentation and label super-resolution, which uses deep convolutional neural networks. We derive a new training algorithm for epitomes which allows, for the first time, learning from very large data sets and derive a label super-resolution algorithm as a statistical inference algorithm over epitomic representations. We illustrate our methods on land cover mapping and medical image analysis tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源