论文标题

使用高斯工艺在代数多族中进行更高

Coarsening in Algebraic Multigrid using Gaussian Processes

论文作者

Gottschalk, Hanno, Kahl, Karsten

论文摘要

事实证明,跨部方法是有效解决偏微分方程(PDE)离散化的大型稀疏线性系统的宝贵工具。代数多机方法,尤其是自适应代数多机方法表明,无需诉诸PDE的属性即可获得多机效率。然而,这些方法所需的设置构成的间接费用不高。基于对可用数据培训的统计模型,机器学习的方法吸引了人们对流线过程的关注。将代数平滑误差解释为高斯过程的一个实例,我们开发了一种新的数据驱动方法来构建自适应代数多机方法。鉴于粗网格的数据,基于高斯的先验分布,kriging插值最小化了A后验分布的平方误差。更进一步,我们利用高斯过程模型中不确定性的量化,以构建有效的可变分组。使用合适的协方差模型的半定图拟合,我们证明了我们的方法使用单个代数平滑矢量产生有效的方法。

Multigrid methods have proven to be an invaluable tool to efficiently solve large sparse linear systems arising in the discretization of partial differential equations (PDEs). Algebraic multigrid methods and in particular adaptive algebraic multigrid approaches have shown that multigrid efficiency can be obtained without having to resort to properties of the PDE. Yet the required setup of these methods poses a not negligible overhead cost. Methods from machine learning have attracted attention to streamline processes based on statistical models being trained on the available data. Interpreting algebraically smooth error as an instance of a Gaussian process, we develop a new, data driven approach to construct adaptive algebraic multigrid methods. Based on Gaussian a priori distributions, Kriging interpolation minimizes the mean squared error of the a posteriori distribution, given the data on the coarse grid. Going one step further, we exploit the quantification of uncertainty in the Gaussian process model in order to construct efficient variable splittings. Using a semivariogram fit of a suitable covariance model we demonstrate that our approach yields efficient methods using a single algebraically smooth vector.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源