论文标题
1D中的粘性断裂:准静态演化和静态相模型模型的衍生
Cohesive fracture in 1D: quasi-static evolution and derivation from static phase-field models
论文作者
论文摘要
在本文中,我们提出了在存在力的存在下裂纹进化的不可逆性概念,这允许在加载和卸载过程中进行不同的响应,这是由损害模型的变异近似动机的动机。我们研究了其适用于简单的一维模型中准静态演化的构建。粘性断裂模型自然是通过广义Ambrosio-Tortorelli类型的相位模型自然出现的,该模型可用作数值模拟的正则化。
In this paper we propose a notion of irreversibility for the evolution of cracks in presence of cohesive forces, which allows for different responses in the loading and unloading processes, motivated by a variational approximation with damage models. We investigate its applicability to the construction of a quasi-static evolution in a simple one-dimensional model. The cohesive fracture model arises naturally via Gamma-convergence from a phase-field model of the generalized Ambrosio-Tortorelli type, which may be used as regularization for numerical simulations.