论文标题

同一侧立场分类任务:通过微调BERT模型来促进论点立场分类

Same Side Stance Classification Task: Facilitating Argument Stance Classification by Fine-tuning a BERT Model

论文作者

Ollinger, Stefan, Dumani, Lorik, Sahitaj, Premtim, Bergmann, Ralph, Schenkel, Ralf

论文摘要

目前,正在对计算论证的研究进行深入研究。这个社区的目的是为用户提供的主题找到最好的专业和骗局论证,以形成自己的意见,或者说服他人采取一定的观点。尽管现有的参数挖掘方法可以为主题找到适当的论点,但对Pro和Con的正确分类尚不可靠。同一侧立场分类任务提供了通过是否共享相同的立场的参数对数据集,并且不需要区分特定于主题的Pro和con词汇,但只需要评估一个立场中的参数相似性。我们对任务的贡献的结果是基于BERT体系结构的设置。我们对三个时期的预训练的BERT模型微调了,并使用了每个参数的前512个令牌来预测两个参数是否共享相同的立场。

Research on computational argumentation is currently being intensively investigated. The goal of this community is to find the best pro and con arguments for a user given topic either to form an opinion for oneself, or to persuade others to adopt a certain standpoint. While existing argument mining methods can find appropriate arguments for a topic, a correct classification into pro and con is not yet reliable. The same side stance classification task provides a dataset of argument pairs classified by whether or not both arguments share the same stance and does not need to distinguish between topic-specific pro and con vocabulary but only the argument similarity within a stance needs to be assessed. The results of our contribution to the task are build on a setup based on the BERT architecture. We fine-tuned a pre-trained BERT model for three epochs and used the first 512 tokens of each argument to predict if two arguments share the same stance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源