论文标题
快速优化参数化量子光学电路
Fast optimization of parametrized quantum optical circuits
论文作者
论文摘要
参数化的量子光电电路是一类量子电路,其中量子信息的载体是光子,而大门是光学转换。由于与每个光学模式相关的光子数量矢量空间的无限维度,因此经典优化这些电路是具有挑战性的。截断空间维度是不可避免的,如果门填充了超出截止的光子数状态,则可能导致结果不正确。为了解决此问题,我们提出了一种比目前的算法更快的数量级,以递归计算高斯运算符的精确矩阵元素及其相对于参数化的梯度。当用非高斯转换(例如Kerr门)增强时,这些操作员可以实现通用量子计算。我们的方法带来了两个优点:首先,通过直接计算高斯操作员的矩阵元素,我们不需要通过组合其他几个运营商来构建它们;其次,我们可以通过将梯度插入自动分化框架(例如Tensorflow或Pytorch)来使用梯度下降算法的任何变体。我们的结果将在量子光学硬件研究,量子机学习,光学数据处理,设备发现和设备设计中找到应用程序。
Parametrized quantum optical circuits are a class of quantum circuits in which the carriers of quantum information are photons and the gates are optical transformations. Classically optimizing these circuits is challenging due to the infinite dimensionality of the photon number vector space that is associated to each optical mode. Truncating the space dimension is unavoidable, and it can lead to incorrect results if the gates populate photon number states beyond the cutoff. To tackle this issue, we present an algorithm that is orders of magnitude faster than the current state of the art, to recursively compute the exact matrix elements of Gaussian operators and their gradient with respect to a parametrization. These operators, when augmented with a non-Gaussian transformation such as the Kerr gate, achieve universal quantum computation. Our approach brings two advantages: first, by computing the matrix elements of Gaussian operators directly, we don't need to construct them by combining several other operators; second, we can use any variant of the gradient descent algorithm by plugging our gradients into an automatic differentiation framework such as TensorFlow or PyTorch. Our results will find applications in quantum optical hardware research, quantum machine learning, optical data processing, device discovery and device design.