论文标题
在多个实例检测网络中将知识从细化中提取
Distilling Knowledge from Refinement in Multiple Instance Detection Networks
论文作者
论文摘要
弱监督的对象检测(WSOD)旨在仅使用标记的图像类别作为监督解决对象检测问题。 WSOD中用于处理缺乏本地化信息的一种常见方法是多次实例学习,近年来,方法开始采用多个实例检测网络(MIDN),该网络允许以端到端方式进行培训。通常,这些方法通过从候选人池中选择最佳实例,然后根据相似性汇总其他实例来起作用。在这项工作中,我们声称仔细选择聚合标准可以大大提高学习探测器的准确性。我们首先为现有方法(OICR)提出一个额外的完善步骤,我们称之为改进知识蒸馏。然后,我们提出一个自适应监督聚合功能,该功能会动态地更改与基础真相类,背景之一相关的框,甚至在每个细化模块监督过程中都被忽略的框。 Pascal VOC 2007中的实验表明,我们的知识蒸馏和平滑的聚集功能可显着提高OICR在弱监督的对象检测和弱监督对象定位任务中的性能。这些改进使得与其他最先进的方法再次提高了OICR竞争力。
Weakly supervised object detection (WSOD) aims to tackle the object detection problem using only labeled image categories as supervision. A common approach used in WSOD to deal with the lack of localization information is Multiple Instance Learning, and in recent years methods started adopting Multiple Instance Detection Networks (MIDN), which allows training in an end-to-end fashion. In general, these methods work by selecting the best instance from a pool of candidates and then aggregating other instances based on similarity. In this work, we claim that carefully selecting the aggregation criteria can considerably improve the accuracy of the learned detector. We start by proposing an additional refinement step to an existing approach (OICR), which we call refinement knowledge distillation. Then, we present an adaptive supervision aggregation function that dynamically changes the aggregation criteria for selecting boxes related to one of the ground-truth classes, background, or even ignored during the generation of each refinement module supervision. Experiments in Pascal VOC 2007 demonstrate that our Knowledge Distillation and smooth aggregation function significantly improves the performance of OICR in the weakly supervised object detection and weakly supervised object localization tasks. These improvements make the Boosted-OICR competitive again versus other state-of-the-art approaches.