论文标题
在分裂树上
On splitting trees
论文作者
论文摘要
我们研究了两种分裂树强迫的变体,它们的理想和规律性。我们证明了与其他著名概念的联系,例如Lebesgue测量率,Baire-和Doughnut-Property和Marczewski领域。此外,我们证明,任何\ emph {absolute} amoeba强迫将树拆分必然会添加真正的真实,并为spinas提供了更多的支持,并且hein的猜想是$ \ add add(\ firce {i} _ \ spl)\ leq \ leq \ sphfrak {b} $。
We investigate two variants of splitting tree forcing, their ideals and regularity properties. We prove connections with other well-known notions, such as Lebesgue measurablility, Baire- and Doughnut-property and the Marczewski field. Moreover, we prove that any \emph{absolute} amoeba forcing for splitting trees necessarily adds a dominating real, providing more support to Spinas' and Hein's conjecture that $\add(\ideal{I}_\spl) \leq \mathfrak{b}$.