论文标题

在分裂树上

On splitting trees

论文作者

Laguzzi, Giorgio, Mildenberger, Heike, Stuber-Rousselle, Brendan

论文摘要

我们研究了两种分裂树强迫的变体,它们的理想和规律性。我们证明了与其他著名概念的联系,例如Lebesgue测量率,Baire-和Doughnut-Property和Marczewski领域。此外,我们证明,任何\ emph {absolute} amoeba强迫将树拆分必然会添加真正的真实,并为spinas提供了更多的支持,并且hein的猜想是$ \ add add(\ firce {i} _ \ spl)\ leq \ leq \ sphfrak {b} $。

We investigate two variants of splitting tree forcing, their ideals and regularity properties. We prove connections with other well-known notions, such as Lebesgue measurablility, Baire- and Doughnut-property and the Marczewski field. Moreover, we prove that any \emph{absolute} amoeba forcing for splitting trees necessarily adds a dominating real, providing more support to Spinas' and Hein's conjecture that $\add(\ideal{I}_\spl) \leq \mathfrak{b}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源