论文标题
缠结的加法和打结通讯
Tangle addition and the knots-quivers correspondence
论文作者
论文摘要
我们证明,树木链接的一行/列彩色homfly-pt不变的生成函数是我们自然与这些链接相关联的适当颤动的动机唐纳森 - 托马斯不变的生成函数的专业。我们的方法通过开发用于Homfly-pt skein生成函数的粘合公式来扩展了先前建立的缠结缠结缠结缠结缠结缠结缠结的缠结对应关系。结果,我们证明了Kucharski-Reineke-Stošić-Sulkowski的猜想链接 - 量信函,用于所有树木链接。
We prove that the generating functions for the one row/column colored HOMFLY-PT invariants of arborescent links are specializations of the generating functions of the motivic Donaldson-Thomas invariants of appropriate quivers that we naturally associate with these links. Our approach extends the previously established tangles-quivers correspondence for rational tangles to algebraic tangles by developing gluing formulas for HOMFLY-PT skein generating functions under Conway's tangle addition. As a consequence, we prove the conjectural links-quivers correspondence of Kucharski-Reineke-Stošić-Sulkowski for all arborescent links.