论文标题

4D爱因斯坦 - 加斯 - 骨网中的虫洞

Wormholes in 4D Einstein-Gauss-Bonnet Gravity

论文作者

Jusufi, Kimet, Banerjee, Ayan, Ghosh, Sushant G.

论文摘要

最近Glavan和Lin [Phys。莱特牧师。 124,081301(2020)]通过将GB耦合常数重新缩放为$α/(d-4)$,并在场外方程级别配制了Einstein-Gauss-Bonnet(EGB)重力。在由此产生的新型4D EGB理论中,GB的贡献提出了非平凡的贡献,该理论保留了自由度的数量,从而摆脱了Ostrogradsky的不稳定性,并绕过了Lovelock定理。我们为各向同性和各向异性物质来源获得了新型的4D EGB重力中的确切球形对称虫孔溶液。在这方面,我们还考虑了一个具有特定径向依赖性形状函数的虫洞,幂律密度谱以及通过施加特定状态方程。为此,我们分析了爆发条件,嵌入图,能量条件和体积积分量词。特别是我们的$ - $ ve分支结果,以$α\ rightarrow 0 $为准,完全减少到\ emph {vis-$ \ grave {a} $ - vis} 4d moriss-thorne gr的蠕虫。

Recently Glavan and Lin [Phys. Rev. Lett. 124, 081301 (2020)] formulated the Einstein-Gauss-Bonnet (EGB) gravity by re-scaling GB coupling constant as $α/(D-4)$ and taking limit $D \to 4$ at the level of field equations. The GB contribution, in the resulting novel 4D EGB theory, makes a nontrivial contribution and the theory preserves the number of degrees of freedom thereby free from the Ostrogradsky instability, and also bypasses the Lovelock theorem. We obtain an exact spherically symmetric wormhole solutions in the novel 4D EGB gravity for an isotropic and anisotropic matter sources. In this regard, we consider also a wormhole with a specific radial-dependent shape function, a power-law density profile as well as by imposing a particular equation of state. To this end, we analyze the flare-out conditions, embedding diagrams, energy conditions and the volume integral quantifier. In particular our $-$ve branch results, in the limit $α\rightarrow 0$, reduced exactly to \emph{vis-$\grave{a}$-vis} 4D Moriss-Thorne wormholes of GR.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源