论文标题

基于细分的机器学习作为单分子断裂连接数据的高级分析工具

Unsupervised Segmentation-Based Machine Learning as an Advanced Analysis Tool for Single Molecule Break Junction Data

论文作者

Bamberger, Nathan D., Ivie, Jeffrey A., Parida, Keshaba N., McGrath, Dominic V., Monti, Oliver L. A.

论文摘要

对单分子中电荷传输的理解的提高对于利用分子的潜力,例如作为最终尺寸限制的电路组件。然而,大多数量子运输实验生成的大型随机数据集的解释和分析仍然是发现急需的结构 - 特制关系的持续挑战。在这里,我们介绍了段聚类,这是一种新型的无监督假设产生工具,用于研究单分子断裂连接距离传导痕迹。与以前的单分子数据的机器学习方法相反,段聚类识别类似痕迹的分组而不是整个痕迹。这为数据集结构提供了一个新的和有利的视角,因为它有助于识别有意义的局部痕量行为,否则这些行为可能会因较长距离尺度而被随机波动所掩盖。我们通过两项案例研究来说明这种方法的功能和广泛适用性,这些案例研究解决了单分子研究中遇到的共同挑战:首先,段聚类用于从不同背景的不同背景中提取主要的分子特征,以提高电导测量的精度和稳健性,从而提高电导量的小小变化,以响应对分子设计的响应,以置于置信度。其次,将片段聚类应用于已知的数据混合物,以严格且无偏的方式将不同的分子特征分开。这些示例表明了两种强大的方式,其中片段聚类可以有助于分子量子传输中的结构特性关系的发展,这是分子电子领域的出色挑战。

Improved understanding of charge-transport in single molecules is essential for harnessing the potential of molecules e.g. as circuit components at the ultimate size limit. However, interpretation and analysis of the large, stochastic datasets produced by most quantum transport experiments remains an ongoing challenge to discovering much-needed structure-property relationships. Here, we introduce Segment Clustering, a novel unsupervised hypothesis generation tool for investigating single molecule break junction distance-conductance traces. In contrast to previous machine learning approaches for single molecule data, Segment Clustering identifies groupings of similar pieces of traces instead of entire traces. This offers a new and advantageous perspective into dataset structure because it facilitates the identification of meaningful local trace behaviors that may otherwise be obscured by random fluctuations over longer distance scales. We illustrate the power and broad applicability of this approach with two case studies that address common challenges encountered in single molecule studies: First, Segment Clustering is used to extract primary molecular features from a varying background to increase the precision and robustness of conductance measurements, enabling small changes in conductance in response to molecular design to be identified with confidence. Second, Segment Clustering is applied to a known data mixture to qualitatively separate distinct molecular features in a rigorous and unbiased manner. These examples demonstrate two powerful ways in which Segment Clustering can aid in the development of structure-property relationships in molecular quantum transport, an outstanding challenge in the field of molecular electronics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源