论文标题
$ qq $ - 系统和非线性积分方程,用于散射幅度在强耦合处
$QQ$-system and non-linear integral equations for scattering amplitudes at strong coupling
论文作者
论文摘要
我们提供了两个基本的功能关系集,这些功能关系描述了$ \ Mathcal {n} = 4 $ sym dual in $ ads_3 $中的散射幅度的强耦合极限:基本$ qq $ - 系统和派生的$ tq $ - 系统。我们使用$ tq $关系以及对$ q $ function(某些$ q $ - 操作员的特征值)的主要属性的知识来编写bethe ansatz方程,{\ it viz。}一组('complect'complection')非线性构成方程为其解决方程式提供了精确的值,该方程可为强度的couppling和ampl and ampling and ampling and ampling and ampling and ampling and ampling and ampl niw wit and ampl and ampling niw and ampling niw and ampl and ampling niw wit。此外,它们在热力学Bethe Ansatz的(“真实”)非线性综合方程方面具有一些优势,并且在分析和数值上仍然繁殖,这些发现来自后者。无论如何,这些新的功能和积分方程对该主题具有更大的看法。
We provide the two fundamental sets of functional relations which describe the strong coupling limit of scattering amplitudes in $\mathcal{N} = 4$ SYM dual to Wilson loops in $AdS_3$: the basic $QQ$-system and the derived $TQ$-system. We use the $TQ$ relations and the knowledge of the main properties of the $Q$-function (eigenvalue of some $Q$-operator) to write the Bethe Ansatz equations, {\it viz.} a set of ('complex') non-linear-integral equations, whose solutions give exact values to the strong coupling amplitudes/Wilson loops. Moreover, they have some advantages with respect to the ('real') non-linear-integral equations of Thermodynamic Bethe Ansatz and still reproduce, both analytically and numerically, the findings coming from the latter. In any case, these new functional and integral equations give a larger perspective on the topic.