论文标题

IVIS降低生物分子模拟框架

ivis Dimensionality Reduction Framework for Biomacromolecular Simulations

论文作者

Tian, Hao, Tao, Peng

论文摘要

分子动力学(MD)模拟已被广泛应用于包括蛋白质在内的大分子。但是,模拟产生的数据集的高维度使得很难进行彻底的分析,并进一步阻碍了对生物大分子的更深入的了解。为了获得对蛋白质结构功能关系的更多见解,需要适当的维度降低方法来将模拟投射到低维空间上。线性降低方法降低方法,例如主成分分析(PCA)和基于时间结构的独立组件分析(T-ECA),无法保留足够的结构信息。尽管比线性方法更好,但非线性方法(例如T-分布的随机邻居嵌入(T-SNE))仍然受到避免系统噪声和保持群间关系的局限性。 IVI是一种新型的基于深度学习的降低方法,最初是针对单细胞数据集开发的。在这里,我们将此框架应用于硅藻三乳酸化含量金黄色含量1A(PTAU1A)的光,氧和电压(LOV)结构域。与其他方法相比,IVI在构建马尔可夫州模型(MSM)方面表现出色,保留本地和全球距离的信息,并保持高维度和低维度之间的相似性,而信息损失最少。此外,IVIS框架能够通过神经网络中的特征权重来解密残基级蛋白质构素的新预期。总体而言,IVI是蛋白质分析工具箱中有前途的成员。

Molecular dynamics (MD) simulations have been widely applied to study macromolecules including proteins. However, high-dimensionality of the datasets produced by simulations makes it difficult for thorough analysis, and further hinders a deeper understanding of biomacromolecules. To gain more insights into the protein structure-function relations, appropriate dimensionality reduction methods are needed to project simulations onto low-dimensional spaces. Linear dimensionality reduction methods, such as principal component analysis (PCA) and time-structure based independent component analysis (t-ICA), could not preserve sufficient structural information. Though better than linear methods, nonlinear methods, such as t-distributed stochastic neighbor embedding (t-SNE), still suffer from the limitations in avoiding system noise and keeping inter-cluster relations. ivis is a novel deep learning-based dimensionality reduction method originally developed for single-cell datasets. Here we applied this framework for the study of light, oxygen and voltage (LOV) domain of diatom Phaeodactylum tricornutum aureochrome 1a (PtAu1a). Compared with other methods, ivis is shown to be superior in constructing Markov state model (MSM), preserving information of both local and global distances and maintaining similarity between high dimension and low dimension with the least information loss. Moreover, ivis framework is capable of providing new prospective for deciphering residue-level protein allostery through the feature weights in the neural network. Overall, ivis is a promising member in the analysis toolbox for proteins.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源