论文标题

集团问题的电路设计及其在量子计算机上的实现

Circuit Design for Clique Problem and Its Implementation on Quantum Computer

论文作者

Sanyal, Arpita, Saha, Amit, Saha, Debasri, Saha, Banani, Chakrabarti, Amlan

论文摘要

在图中查找集团的模式匹配能力具有多个应用程序。 $ k $ -clique问题是一个集体问题的特殊情况,确定了任意图是否包含大小$ k $的集团,已经在量子域中解决了。 $ k $ clique问题的变体列出了所有尺寸$ k $的集团,也具有流行的现代应用程序。尽管如此,在量子设置中的$ k $ clique问题的这种变体仍然没有受到影响。在本文中,除了对这种$ k $确定问题的理论解决方案外,使用Grover的算法解决了实用的基于量子门的实现。这种方法进一步扩展到设计电路,以解决经典量子式混合体系结构中的最大集合问题。该算法会自动为任何给定的未定向且未加权的图和任何给定的$ K $生成电路,这使我们的方法在本质上进行了概括。与最先进的方法相比,解决$ k $ clique问题的拟议方法已经显示出量子成本和电路深度的降低。还提出了一个可以将自动生成的电路映射到量子设备的框架。使用IBM的Qiskit证明了对实验结果的分析。

Finding cliques in a graph has several applications for its pattern matching ability. $k$-clique problem, a special case of clique problem, determines whether an arbitrary graph contains a clique of size $k$, has already been addressed in quantum domain. A variant of $k$-clique problem that lists all cliques of size $k$, has also popular modern-day applications. Albeit, the implementation of such variant of $k$-clique problem in quantum setting still remains untouched. In this paper, apart from theoretical solution of such $k$-clique problem, practical quantum gate-based implementation has been addressed using Grover's algorithm. This approach is further extended to design circuit for the maximum clique problem in classical-quantum hybrid architecture. The algorithm automatically generates the circuit for any given undirected and unweighted graph and any given $k$, which makes our approach generalized in nature. The proposed approach of solving $k$-clique problem has exhibited a reduction of qubit cost and circuit depth as compared to the state-of-the-art approach, for a small $k$ with respect to a large graph. A framework that can map the automated generated circuit for clique problem to quantum devices is also proposed. An analysis of the experimental results is demonstrated using IBM's Qiskit.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源