论文标题
在多个$ \ mathbb {z} _p $ -extensions上的混合签名Selmer组的代数功能方程式上
On the algebraic functional equation for the mixed signed Selmer group over multiple $\mathbb{Z}_p$-extensions
论文作者
论文摘要
让$ e $是在一个数字字段上定义的椭圆曲线,在固定的奇数$ p $上方的所有数字字段中,至少一个是$ e $的超级素数。在本文中,我们将为椭圆曲线的混合签名的Selmer组建立代数函数方程,而在$ \ mathbb {z} _p $ - extension上,每个素数上方的每一个prime $ p $都很好地降低。
Let $E$ be an elliptic curve defined over a number field with good reduction at all primes above a fixed odd prime $p$, where at least one of which is a supersingular prime of $E$. In this paper, we will establish the algebraic functional equation for the mixed signed Selmer groups of an elliptic curve with good reduction at every prime above $p$ over a multiple $\mathbb{Z}_p$-extension.