论文标题
cantor riemannium
The Cantor Riemannium
论文作者
论文摘要
全体形态细菌的riemann表面是其Weierstrass分析延续产生的空间。全体形状细菌的riemannium空间是其骨单基因延续产生的空间。 riemannium空间是度量,路径连接,gromov长度空间,不一定是$σ$ -COMPACT。我们构建了Riemannium空间的例子:Cantor Riemannium。
The Riemann surface of a holomorphic germ is the space generated by its Weierstrass analytic continuation. The Riemannium space of a holomorphic germ is the space generated by its Borel monogenic continuation. Riemannium spaces are metric, path connected, Gromov length spaces, not necessarily $σ$-compact. We construct an example of Riemannium space: The Cantor Riemannium.