论文标题

无限laplacian的复杂扰动的尖锐光谱边界

Sharp spectral bounds for complex perturbations of the indefinite Laplacian

论文作者

Cuenin, Jean-Claude, Ibrogimov, Orif O.

论文摘要

我们得出了无限laplacian在实际线路上的复杂扰动的特征值的定量界限。我们的结果即使是对实现的潜力,我们的结果也大大提高了现有结果。对于$ l^1 $ - 潜在的,我们获得了适合嵌入特征值的最佳光谱外壳,而我们对$ l^p $ - 电位的结果在[1,\ infty)$ in [1,\ infty)$中$ p \ in All $ p \ in [1,p $ p \ in frusted oteranvalues的想象中均产生了鲜明的频谱界限。通过明确的例子证明了结果的清晰度。

We derive quantitative bounds for eigenvalues of complex perturbations of the indefinite Laplacian on the real line. Our results substantially improve existing results even for real-valued potentials. For $L^1$-potentials, we obtain optimal spectral enclosures which accommodate also embedded eigenvalues, while our result for $L^p$-potentials yield sharp spectral bounds on the imaginary parts of eigenvalues of the perturbed operator for all $p\in[1,\infty)$. The sharpness of the results are demonstrated by means of explicit examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源