论文标题

快速MRI重建的学习光流

Learning Optical Flow for Fast MRI Reconstruction

论文作者

Schmoderer, T., Aviles-Rivero, A. I, Corona, V., Debroux, N., Schönlieb, C-B.

论文摘要

从技术和临床观点中,重建从不足的原始数据中重建高质量的磁共振图像(MRI)引起了极大的兴趣。然而,到目前为止,由于其严重的不良性,这仍然是一个数学和计算挑战性的问题,这是由于高度不足的数据导致了明显丢失的信息。尽管已经提出了许多技术来改善图像重建,但它们仅考虑时空正则化,这在包括动态数据在内的几种相关场景中显示了其局限性。在这项工作中,我们提出了一个新的数学模型,用于重建几乎没有测量的高质量医疗MRI。我们提出的方法结合了 - \ textit {在多任务和混合模型中} - 传统的压缩传感公式,通过学习光流近似,通过学习动态MRI重建动态MRI。更确切地说,我们建议以光流模型的形式编码动力学,该动力学在学习词典上稀少地表示。这具有一个优势,即在光流期的训练中不需要地面真实数据。此外,我们提出了一种有效的优化方案,以基于交替的分裂方法解决非凸面问题。我们通过使用不同的数据集和加速因子来证明方法的潜力。我们的合并方法达到并胜过几种最先进的技术。最后,我们展示了我们的技术将基于幻影的知识传输到真实数据集的能力。

Reconstructing high-quality magnetic resonance images (MRI) from undersampled raw data is of great interest from both technical and clinical point of views. To this date, however, it is still a mathematically and computationally challenging problem due to its severe ill-posedness, resulting from the highly undersampled data leading to significantly missing information. Whilst a number of techniques have been presented to improve image reconstruction, they only account for spatio-temporal regularisation, which shows its limitations in several relevant scenarios including dynamic data. In this work, we propose a new mathematical model for the reconstruction of high-quality medical MRI from few measurements. Our proposed approach combines - \textit{in a multi-task and hybrid model} - the traditional compressed sensing formulation for the reconstruction of dynamic MRI with motion compensation by learning an optical flow approximation. More precisely, we propose to encode the dynamics in the form of an optical flow model that is sparsely represented over a learned dictionary. This has the advantage that ground truth data is not required in the training of the optical flow term. Furthermore, we present an efficient optimisation scheme to tackle the non-convex problem based on an alternating splitting method. We demonstrate the potentials of our approach through an extensive set of numerical results using different datasets and acceleration factors. Our combined approach reaches and outperforms several state of the art techniques. Finally, we show the ability of our technique to transfer phantom based knowledge to real datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源