论文标题

MHD的物理受限的低维模型:第一原理和数据驱动方法

Physics-constrained, low-dimensional models for MHD: First-principles and data-driven approaches

论文作者

Kaptanoglu, Alan A., Morgan, Kyle D., Hansen, Chris J., Brunton, Steven L.

论文摘要

等离子体是高度非线性和多尺度的,激发了模型的层次结构,以理解和描述其行为。然而,尽管这些减少的模型具有理解关键物理机制,有效的计算以及实时优化和控制的希望,但比磁水动力学(MHD)的血浆模型稀少,尽管磁性水力动力学(MHD)比磁性水力动力学(MHD)稀少。通过将MHD方程投影在截断的模态基础上获得的Galerkin模型,通过现代机器学习和系统识别获得的数据驱动模型可以在模型层次结构的较低级别中提供此差距。这项工作为可压缩等离子体开发了一个减少的建模框架,利用了基于投影的流体模型和数据驱动的数十年的进展。我们首先为非线性MHD系统的基于投影的模型降低开始。为了避免用于磁性,速度和压力场的单独模态分解,我们将能量内部产物引入了将所有磁场合成的尺寸一致的,减小的阶。接下来,我们通过Galerkin投影将Hall-MHD方程式在这些模式上获得分析模型。我们说明了全球保护定律如何限制模型参数,从而揭示了可以在数据驱动模型中强制执行的对称性,并将这些模型直接连接到基础物理学。我们证明了这种方法对3D Spheromak实验的高保真数值模拟数据的有效性。该手稿在流体力学中建造了广泛的盖尔金文献的桥梁,并促进了对等离子体的投影基于投影和数据驱动模型的未来原则开发。

Plasmas are highly nonlinear and multi-scale, motivating a hierarchy of models to understand and describe their behavior. However, there is a scarcity of plasma models of lower fidelity than magnetohydrodynamics (MHD), although these reduced models hold promise for understanding key physical mechanisms, efficient computation, and real-time optimization and control. Galerkin models, obtained by projection of the MHD equations onto a truncated modal basis, and data-driven models, obtained by modern machine learning and system identification, can furnish this gap in the lower levels of the model hierarchy. This work develops a reduced-order modeling framework for compressible plasmas, leveraging decades of progress in projection-based and data-driven modeling of fluids. We begin by formalizing projection-based model reduction for nonlinear MHD systems. To avoid separate modal decompositions for the magnetic, velocity, and pressure fields, we introduce an energy inner product to synthesize all of the fields into a dimensionally-consistent, reduced-order basis. Next, we obtain an analytic model by Galerkin projection of the Hall-MHD equations onto these modes. We illustrate how global conservation laws constrain the model parameters, revealing symmetries that can be enforced in data-driven models, directly connecting these models to the underlying physics. We demonstrate the effectiveness of this approach on data from high-fidelity numerical simulations of a 3D spheromak experiment. This manuscript builds a bridge to the extensive Galerkin literature in fluid mechanics, and facilitates future principled development of projection-based and data-driven models for plasmas.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源