论文标题

随机流行模型的推断和泊松随机测量数据增强的诊断

Stochastic Epidemic Models inference and diagnosis with Poisson Random Measure Data Augmentation

论文作者

Nguyen-Van-Yen, Benjamin, Del Moral, Pierre, Cazelles, Bernard

论文摘要

我们提出了一种新的贝叶斯推理方法,用于考虑过程的内在随机性。我们展示了如何将SIR型马尔可夫跳跃过程作为泊松随机度量(PRM)的随机微分方程的解决方案,以及如何从参数值和PRM实现的确定性上模拟过程轨迹。 这构成了我们数据增强的MCMC的基础,该基础在于用未观察到的PRM值增强参数空间。由此产生的简单大都市束缚采样器是一种有效的基于仿真的推理方法,可以轻松地从模型转移到模型。与基于单个感染历史的Gibbs采样的最新数据增强方法相比,PRM-EAGMENT的MCMC量表随着流行病的大小而更加灵活。 PRM-EAGMENT的MCMC还产生了代表过程随机性的PRM的后验估计值,可用于验证模型。如果模型良好,则后验分布不应表现出任何模式,并且接近PRM先验分布。我们通过将非季节模型拟合到一些模拟的季节性案例计数数据来说明这一点。我们的方法应用于法国波利尼西亚2013年的寨卡病毒流行,我们的方法表明,一个简单的SEIR模型无法正确复制病例数量的初始急剧增加以及血清阳性的最终比例。 因此,PRM-EAGMANTAMETAMTAMTION为随机流行模型推断提供了一个连贯的故事,其中明确推断过程随机性有助于模型验证。

We present a new Bayesian inference method for compartmental models that takes into account the intrinsic stochasticity of the process. We show how to formulate a SIR-type Markov jump process as the solution of a stochastic differential equation with respect to a Poisson Random Measure (PRM), and how to simulate the process trajectory deterministically from a parameter value and a PRM realisation. This forms the basis of our Data Augmented MCMC, which consists in augmenting parameter space with the unobserved PRM value. The resulting simple Metropolis-Hastings sampler acts as an efficient simulation-based inference method, that can easily be transferred from model to model. Compared with a recent Data Augmentation method based on Gibbs sampling of individual infection histories, PRM-augmented MCMC scales much better with epidemic size and is far more flexible. PRM-augmented MCMC also yields a posteriori estimates of the PRM, that represent process stochasticity, and which can be used to validate the model. If the model is good, the posterior distribution should exhibit no pattern and be close to the PRM prior distribution. We illustrate this by fitting a non-seasonal model to some simulated seasonal case count data. Applied to the Zika epidemic of 2013 in French Polynesia, our approach shows that a simple SEIR model cannot correctly reproduce both the initial sharp increase in the number of cases as well as the final proportion of seropositive. PRM-augmentation thus provides a coherent story for Stochastic Epidemic Model inference, where explicitly inferring process stochasticity helps with model validation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源