论文标题
加权$ l^p $估计的伯格曼和塞格(Szegő
Weighted $L^p$ Estimates for the Bergman and Szegő Projections on Strongly Pseudoconvex Domains with Near Minimal Smoothness
论文作者
论文摘要
我们证明了普通Bergman和Cauchy-Szegő的加权$ l^p $定期性,对强烈的pseudoconvex域进行了预测,$ \ mathbb {c}^n $ in $ \ mathbb {c}^n $,几乎平滑度,以适当的概括$ b_p/a_p $类。特别是,$ b_p/a_p $ muckenhoupt类型的条件相对于在准中心中的球表示,该球是在域内或域$ d $的内部或边界上作为同质类型的空间。
We prove the weighted $L^p$ regularity of the ordinary Bergman and Cauchy-Szegő projections on strongly pseudoconvex domains $D$ in $\mathbb{C}^n$ with near minimal smoothness for appropriate generalizations of the $B_p/A_p$ classes. In particular, the $B_p/A_p$ Muckenhoupt type condition is expressed relative to balls in a quasi-metric that arises as a space of homogeneous type on either the interior or the boundary of the domain $D$.