论文标题
Everlasting Secure密钥协议与QKD超出QKD的量子计算混合安全模型超越QKD
Everlasting Secure Key Agreement with performance beyond QKD in a Quantum Computational Hybrid security model
论文作者
论文摘要
扩展功能并克服QKD可以运行的性能限制,需要量子中继器或新的安全模型。研究后一种选项,我们介绍了\ textIt {量子计算混合}(QCH)安全模型,在该模型中,我们假设计算安全的加密只能在时间后才比可用量子记忆的连贯性时间更长。我们提出了一个显式$ d $维密钥分布协议,我们称之为mub- \ textit {量子计算timelock}(mub-qct),其中在$ d+1 $互无偏见的基础上选择的qudit状态编码一个位。短期安全加密用于与合法的用户共享基础信息,同时从夏娃到她的量子内存分解后,它都不知道。这允许将EVE的最佳攻击减少到立即测量,然后进行测量后解码。 \ par我们证明MUB-QCT可以使用包含$ O(\ sqrt {d})$光子的输入状态启用永恒的安全键分布。与QKD相比,这会导致一系列重要的改进:在功能方面,在一个发件人和许多接收器之间牢固地操作的能力,其实施可能是不受信任的;大幅度的性能提高,其特征是$ O(\ sqrt {d})$关键费率的乘法和扩展名的乘以$ 25 {\ rm} km \ times \ times \ log(d)$(d)$(d)$。 MUB-QCT构造可采用大量具有当前或近期多模光子技术技术的模式实施,具有对量子密钥分布的性能和实用性的根本转变。
Extending the functionality and overcoming the performance limitation under which QKD can operate requires either quantum repeaters or new security models. Investigating the latter option, we introduce the \textit{Quantum Computational Hybrid} (QCH) security model, where we assume that computationally secure encryption may only be broken after time much longer than the coherence time of available quantum memories. We propose an explicit $d$-dimensional key distribution protocol, that we call MUB-\textit{Quantum Computational Timelock} (MUB-QCT) where one bit is encoded on a qudit state chosen among $d+1$ mutually unbiased bases (MUBs). Short-term-secure encryption is used to share the basis information with legitimate users while keeping it unknown from Eve until after her quantum memory decoheres. This allows reducing Eve's optimal attack to an immediate measurement followed by post-measurement decoding. \par We demonstrate that MUB-QCT enables everlasting secure key distribution with input states containing up to $O(\sqrt{d})$ photons. This leads to a series of important improvements when compared to QKD: on the functional side, the ability to operate securely between one sender and many receivers, whose implementation can moreover be untrusted; significant performance increase, characterized by a $O(\sqrt{d})$ multiplication of key rates and an extension by $25 {\rm} km \times \log(d)$ of the attainable distance over fiber. Implementable with a large number of modes with current or near-term multimode photonics technologies, the MUB-QCT construction has the potential to provide a radical shift to the performance and practicality of quantum key distribution.