论文标题
p3HT的层依赖性准粒子电子结构:第一原理底物筛选$ GW $方法的PCBM接口
Layer-dependent Quasiparticle Electronic Structure of the P3HT:PCBM Interface from A First-Principles Substrate Screening $GW$ Approach
论文作者
论文摘要
原型有机光伏材料是由guly型聚(3-己基噻吩)(P3HT)和[6,6] -Phenyl-C $ _ {61} $ - 丁酸酯甲基酯(PCBM)组成的异质结。对该系统中能量转换机制的微观理解涉及电子结构与P3HT的原子几何形状之间的关系:PCBM接口。在这项工作中,P3HT层的数量对P3HT:PCBM接口的电子结构的影响是通过First-Principles $ GW $研究的。我们应用底物筛选方法来加速此类计算,并更好地了解界面处的多体介电筛选。发现整个界面的准粒子带隙会随着P3HT层的增加而减小。发现界面各个组件的间隙比其孤立的对应物小,对P3HT层的数量有很强的依赖性。重要的是,在比较p3HT:PCBM的系统时 - 存在一个界面 - P3HT:PCBM:P3HT的系统,其中PCBM的任一侧形成了一个接口,我们发现两个系统表现出非常不同的准级能量水平一致性。我们在相关实验中讨论了我们发现的可能含义。 P3HT:PCBM接口的层依赖性准颗粒电子结构的观察到的趋势为这些材料中能量转换途径提供了计算洞察力。
A prototypical organic photovoltaic material is a heterojunction composed of the blend of regioregular poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C$_{61}$-butyric acid methyl ester (PCBM). Microscopic understanding of the energy conversion mechanism in this system involves the relationship between the electronic structure and the atomistic geometry of P3HT:PCBM interfaces. In this work, the effect of the number of P3HT layers on the electronic structure of the P3HT:PCBM interface is studied by means of first-principles $GW$. We apply the substrate screening approach to accelerate such calculations and to better understand the many-body dielectric screening at the interface. The quasiparticle band gap of the entire interface is found to decrease as the number of P3HT layers increases. The gaps of the individual components of the interface are found to be smaller than their isolated counterparts, with strong dependence on the number of P3HT layers. Importantly, when comparing the system of P3HT:PCBM - where a single interface is present - and the system of P3HT:PCBM:P3HT, where an interface is formed on either side of PCBM, we find that the two systems exhibit very different quasiparticle energy level alignments. We discuss possible implications of our findings in related experiments. The observed trends in layer-dependent quasiparticle electronic structure of P3HT:PCBM interfaces provide computational insight into energy conversion pathways in these materials.