论文标题

先知不平等和最佳订购的可变分解

Variable Decomposition for Prophet Inequalities and Optimal Ordering

论文作者

Liu, Allen, Leme, Renato Paes, Pal, Martin, Schneider, Jon, Sivan, Balasubramanian

论文摘要

我们针对随机变量引入了一种新的分解技术,该变量将先知不平等问题的一般实例映射到新实例中,其中除了恒定数量的变量外,所有变量都具有可拖动的结构,我们称为$(\ varepsilon,δ)$ - 小。使用此技术,我们在该地区的几个出色问题上取得了进展: - 我们表明,即使在非相同分布的情况下,只要我们允许我们去除少量恒定分布数量,就可以(任意接近)$β\约0.745 $的最佳近似值。 - 我们表明,对于频繁的先知不等式实例(在每个分布重新涉及几次的情况下),可以达到$β$的最佳近似值(改善了以前最著名的$ 0.738 $)。 - 我们给出了$β\ $β\约0.745 $的最佳近似保证的新的新证明。分布。证明是原始的,同时产生上限和下边界。 - 将此分解与新型凸编程公式结合使用,我们构建了最佳订购问题的第一个有效PTA。

We introduce a new decomposition technique for random variables that maps a generic instance of the prophet inequalities problem to a new instance where all but a constant number of variables have a tractable structure that we refer to as $(\varepsilon, δ)$-smallness. Using this technique, we make progress on several outstanding problems in the area: - We show that, even in the case of non-identical distributions, it is possible to achieve (arbitrarily close to) the optimal approximation ratio of $β\approx 0.745$ as long as we are allowed to remove a small constant number of distributions. - We show that for frequent instances of prophet inequalities (where each distribution reoccurs some number of times), it is possible to achieve the optimal approximation ratio of $β$ (improving over the previous best-known bound of $0.738$). - We give a new, simpler proof of Kertz's optimal approximation guarantee of $β\approx 0.745$ for prophet inequalities with i.i.d. distributions. The proof is primal-dual and simultaneously produces upper and lower bounds. - Using this decomposition in combination with a novel convex programming formulation, we construct the first Efficient PTAS for the Optimal Ordering problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源