论文标题
智能手机应用程序对自行车共享系统的影响
The Impact of Smartphone Apps on Bike Sharing Systems
论文作者
论文摘要
随着越来越多的人为了日常通勤,越来越多的人采用可持续的运输解决方案,自行车共享系统正在爆炸。但是,随着越来越多的人使用该系统,骑手经常遇到自行车到达车站时可能无法使用的自行车或码头。结果,许多类似Citibike和Divvy的系统通过智能手机应用程序为骑手提供有关网络的信息,以便骑手可以找到带有可用自行车的车站。但是,并非所有客户都采用了这些智能手机应用程序进行电台选择。通过结合客户选择建模和有限容量排队模型,我们探讨了智能手机应用技术对增加吞吐量并减少自行车共享系统中的阻塞的影响。为此,我们证明了平均场限制和中心限制定理,用于具有$ k $自行车的电台数量的经验过程。我们还证明,对于一个称为比率过程的新过程,我们还限制了定理,该过程的特征是自行车可用性比位于间隔的特定分区[0,1]的站点的比例。对于平均场限制,我们证明存在平衡是独特的,并且经验度量的固定分布在相同的平衡下收敛到狄拉克质量,从而显示出限制结果的交换($ \ lim_ {t \ rightArrow \ rightarrow \ rightarrow \ infty \ infty \ infty} \ lim_ \ infty} \ lim_ {t \ rightarrow \ infty} $)。我们的极限定理提供了有关大型自行车共享系统的平均值,方差和样本路径动力学的见解。我们的结果表明,如果我们增加使用智能手机应用程序信息的客户的比例,那么自行车共享网络的熵就会减少,并且骑手在网络中的阻碍较少。
Bike-sharing systems are exploding in cities around the world as more people are adopting sustainable transportation solutions for their everyday commutes. However, as more people use the system, riders often encounter that bikes or docks might not be available when they arrive to a station. As a result, many systems like CitiBike and Divvy provide riders with information about the network via smartphone apps so that riders can find stations with available bikes. However, not all customers have adopted the use of these smartphone apps for their station selection. By combining customer choice modeling and finite capacity queueing models, we explore the impact of the smartphone app technology to increase throughput and reduce blocking in bike sharing systems. To this end, we prove a mean-field limit and a central limit theorem for an empirical process of the number of stations with $k$ bikes. We also prove limit theorems for a new process called the ratio process, which characterizes the proportion of stations whose bike availability ratio lies within a particular partition of the interval [0,1]. For the mean field limit, we prove that the equilibrium exists, is unique, and that the stationary distribution of the empirical measure converges to a Dirac mass at the same equilibrium, thus showing an interchange of limits result ($\lim_{t\rightarrow \infty}\lim_{N\rightarrow \infty}=\lim_{N\rightarrow \infty}\lim_{t\rightarrow \infty}$). Our limit theorems provide insight on the mean, variance, and sample path dynamics of large scale bike-sharing systems. Our results illustrate that if we increase the proportion of customers that use smartphone app information, the entropy of the bike sharing network is reduced, and riders experience less blocking in the network.