论文标题

瞬态轴对称taylor-couette流动的随机稳定

Stochastic Stabilization of Transient Axisymmetric Taylor-Couette Flow

论文作者

Godwin, Larry E., Generalis, Sotos C., Chattopadhyay, Amit K.

论文摘要

在范式的Navier-Stokes流量模型上结构结构,我们研究了一个随机迫使泰勒 - couette系统以狭窄的间隙极限,以分析未经保守的(高斯)力和非线性扰动的同时影响,以确定线性稳定性。我们的分析确定了关键参数窗口,即使在共同不同的随机强迫和非线性波动上,该模型也会显着保留其线性稳定性。我们将此功能确定为{\ IT潜在普遍性},然后我们利用它来回答一个难以捉摸的问题,即即使在存在非线性扰动和未经保留的随机强迫的情况下,即使在存在非线性扰动和存在的情况下,即使在存在非线性的积聚模型中如何保持其稳定性。我们的分析大纲超出了所研究的直接模型,并奠定了分析由外力作用并遭受边界层不稳定性的非线性剪切模型的稳定性的一般基础。存在非线性扰动和非保守的随机强迫。我们的分析大纲超出了所研究的直接模型,并奠定了分析由外力作用并遭受边界层不稳定性的非线性剪切模型的稳定性的一般基础。

Structured on the paradigmatic Navier-Stokes flow model, we study a stochastically forced Taylor-Couette system in the narrow gap limit, in order to analyze the simultaneous impact of a non-conserved (Gaussian) force and a nonlinear perturbation, in determining linear stability. Our analysis identifies key parametric windows within which the model remarkably retains its linear stability, even against jointly varying stochastic forcing and nonlinear fluctuations. We identify this feature as a {\it latent universality}, that we then utilize to answer the elusive question as to how a recent groundbreaking accretion flow model retains its stability, even in presence of nonlinear perturbations and non-conserved stochastic forcing. Our analytical outline goes beyond the immediate model studied and lays a generic foundation of analyzing stability for nonlinear sheared models acted on by external forces and subjected to boundary layer instability. presence of nonlinear perturbations and non-conserved stochastic forcing. Our analytical outline goes beyond the immediate model studied and lays a generic foundation of analyzing stability for nonlinear sheared models acted on by external forces and subjected to boundary layer instability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源