论文标题

知识重构归纳计划综合

Knowledge Refactoring for Inductive Program Synthesis

论文作者

Dumancic, Sebastijan, Guns, Tias, Cropper, Andrew

论文摘要

人类不断地重组知识以更有效地使用知识。我们的目标是为机器学习系统提供类似的能力,以便可以更有效地学习。我们介绍了\ textIt {知识重构}问题,目标是重组学习者的知识库以减少其规模并最大程度地减少其中的冗余。我们专注于归纳逻辑编程,其中知识库是逻辑程序。我们介绍了Knorf,该系统可以使用约束优化解决重构问题。我们在两个程序归纳域上评估了我们的方法:现实世界的字符串变换和建筑乐高结构。我们的实验表明,从重构知识中学习可以提高预测精度四倍,并将学习时间减少一半。

Humans constantly restructure knowledge to use it more efficiently. Our goal is to give a machine learning system similar abilities so that it can learn more efficiently. We introduce the \textit{knowledge refactoring} problem, where the goal is to restructure a learner's knowledge base to reduce its size and to minimise redundancy in it. We focus on inductive logic programming, where the knowledge base is a logic program. We introduce Knorf, a system which solves the refactoring problem using constraint optimisation. We evaluate our approach on two program induction domains: real-world string transformations and building Lego structures. Our experiments show that learning from refactored knowledge can improve predictive accuracies fourfold and reduce learning times by half.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源