论文标题

键形生成具有跨文档的关注

Keyphrase Generation with Cross-Document Attention

论文作者

Diao, Shizhe, Song, Yan, Zhang, Tong

论文摘要

KeyPhrase的生成旨在生成一组摘要的短语,总结给定文档的基本内容。常规方法通常应用编码器架构来生成输入文档的输出键角,它们旨在关注每个当前文档,因此它们不可避免地忽略了由其他相似文档(即交叉数据依赖性和延伸主题)携带的重要语料库级信息。在本文中,我们提出了一种基于变压器的键形生成器CDKGEN,它通过跨文档注意网络将变压器扩展到全球关注,以将可用文档作为参考结合起来,以便在主题信息的指导下生成更好的键盘。除了提出的变压器 +跨文档注意体系结构之外,我们还采用了一种复制机制来增强我们的模型,通过从文档中选择适当的单词来处理密钥拼酶中的播音组外词。五个基准数据集的实验结果说明了我们的模型的有效性和有效性,这实现了所有数据集中最先进的性能。进一步的分析证实,所提出的模型能够生成与参考文献一致的键形,同时保持足够的多样性。 CDKGEN的代码可从https://github.com/svaigba/cdkgen获得。

Keyphrase generation aims to produce a set of phrases summarizing the essentials of a given document. Conventional methods normally apply an encoder-decoder architecture to generate the output keyphrases for an input document, where they are designed to focus on each current document so they inevitably omit crucial corpus-level information carried by other similar documents, i.e., the cross-document dependency and latent topics. In this paper, we propose CDKGen, a Transformer-based keyphrase generator, which expands the Transformer to global attention with cross-document attention networks to incorporate available documents as references so as to generate better keyphrases with the guidance of topic information. On top of the proposed Transformer + cross-document attention architecture, we also adopt a copy mechanism to enhance our model via selecting appropriate words from documents to deal with out-of-vocabulary words in keyphrases. Experiment results on five benchmark datasets illustrate the validity and effectiveness of our model, which achieves the state-of-the-art performance on all datasets. Further analyses confirm that the proposed model is able to generate keyphrases consistent with references while keeping sufficient diversity. The code of CDKGen is available at https://github.com/SVAIGBA/CDKGen.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源