论文标题

用于傅立叶宽段转换的离散的维也纳 - 肯宁定理:应用于分子模拟

Discretized Wiener-Khinchin theorem for Fourier-Laplace transformation: application to molecular simulations

论文作者

Koyama, Akira, Nicholson, David A., Andreev, Marat, Rutledge, Gregory C., Fukao, Koji, Yamamoto, Takashi

论文摘要

Wiener-khinchin定理用于傅立叶宽段转换(WKT-FLT)提供了一种可靠的方法,可以从分子模拟中计算任意自相关函数的数值单侧傅立叶变换。但是,现有的WKT-FLT方程在频域松弛函数的输出中产生两个伪像。另外,这些伪像在从弛豫函数转换的频域响应函数中更为明显。我们发现与WKT-FLT方程离散化相关的这些伪像的来源。考虑到这些来源,我们得出了针对频率域松弛和响应函数指定的新的离散的WKT-FLT方程,并删除了伪影。通过直接算法的流程图说明了离散的WKT-FLT方程的使用。我们还提供了用于计算动态结构因子的离散wkt-flt方程的应用示例,并从分子模拟中依赖波形矢量依赖性动态敏感性。

The Wiener-Khinchin theorem for the Fourier-Laplace transformation (WKT-FLT) provides a robust method to calculate numerically single-side Fourier transforms of arbitrary autocorrelation functions from molecular simulations. However, the existing WKT-FLT equation produces two artifacts in the output of the frequency-domain relaxation function. In addition, these artifacts are more apparent in the frequency-domain response function converted from the relaxation function. We find the sources of these artifacts that are associated with the discretization of the WKT-FLT equation. Taking these sources into account, we derive the new discretized WKT-FLT equations designated for both the frequency-domain relaxation and response functions with the artifacts removed. The use of the discretized WKT-FLT equations is illustrated by a flow chart of an on-the-fly algorithm. We also give application examples of the discretized WKT-FLT equations for computing dynamic structure factor and wave-vector-dependent dynamic susceptibility from molecular simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源